

OCR (B) Physics GCSE Topic 4.2 - How can we Describe Motion?

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What are the 3 main components of motion?

What are the 3 main components of motion?

- 1. Speed
- 2. Direction
- 3. Acceleration (change in speed)

Give the equation for average speed

What is the difference between distance and displacement?

What is the difference between distance and displacement?

Distance is a scalar quantity; displacement is a vector (distance **and** direction).

What is the difference between speed and velocity?

What is the difference between speed and velocity?

Speed is scalar quantity. Velocity is a vector (speed in a given direction).

Give an estimate of typical walking speed

Give an estimate of typical walking speed

1-2 m/s

Give an equation for acceleration

Give an equation for acceleration

acceleration = (m/s²) final velocity - initial velocity (m/s) time (s)

Give an equation linking acceleration with displacement

Give an equation linking acceleration with displacement

final velocity² (m/s) =

initial velocity² (m/s) + 2 x acceleration (m/s²) x displacement (m)

$$v^2 = u^2 + 2as$$

What is the gradient of a displacement-time graph?

What is the gradient of a displacement-time graph?

The velocity.

What does a curved line represent on a displacement-time graph?

Acceleration (or deceleration).

What does a curved line represent on a displacement-time graph?

What does the gradient of a velocity-time graph represent?

What does the gradient of a velocity-time graph represent?

Acceleration.

What does the area under a velocity-time graph represent?

What does the area under a velocity-time graph represent?

The displacement.

What does a curved line represent on a velocity-time graph?

What does a curved line represent on a velocity-time graph?

Acceleration is not constant.

